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Stochastic Analysis of a Hopf Bifurcation: 
Master Equation Approach 
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The effect of inhomogeneous fluctuations in a reaction-diffusion system 
exhibiting a Hopf bifurcation is analyzed using the master equation approach. A 
Taylor expansion of the logarithm of the stationary probability, known as the 
stochastic potential, is calculated. This procedure displays marked analogies 
with the theory of normal forms. The critical potential, reduced to its local 
expansion around an arbitrary point of the limit cycle, brings out the essential 
role played by the phase of the oscillating variables. A comparison with the 
Langevin analysis of Walgraefet al. [J. Chem. Phys. 78(6):3043 (1983)] is per- 
formed. 
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limit cycle; correlations. 

1. INTRODUCTION 

The analysis of nonlinear nonequilibrium systems in the vicinity of bifur- 
cation points of new branches of solutions has attracted a great deal of 
attention in the last years. At the level of deterministic analysis, con- 
siderable progress has been achieved in the study of the various kinds of 
attractors using such tools as perturbation expansions or the theory of nor- 
mal forms. (1,2) At the level of stochastic analysis, the master equation has 
been used to analyze bifurcations to steady states without symmetry 
breaking,(3 5) to limit cycles in a zero-dimensional description, ~6 s) and to 
steady states involving space symmetry breaking. (9,1~ On the other hand 
the techniques of critical dynamics, based on the addition of random 
Langevin forces in the phenomenological equations, has proved very fruit- 
ful to sort out qualitative results on the behaviour of the fluctuations near 
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the principal bifurcations, (H'~2) including the effect of inhomogeneous fluc- 
tuations near the onset of a limit cycle. (13) 

Our principal goal in the present work is to analyze the effect of 
inhomogeneous fluctuations in a reaction-diffusion system exhibiting a 
Hopf bifurcation, using the master equation approach. In contrast to the 
Langevin approach, we incorporate from the very beginning information 
concerning the elementary processes going on in the system. We propose a 
general procedure allowing one to determine the system's attractors, which 
turns out to display marked analogies with the theory of normal forms. (2) 
In addition to normal form analysis however, our method takes into 
account the fluctuations around the attractor. Previous analysis/4'12) have 
shown that fluctuations can indeed play an important role near bifurcation 
points, especially in low-dimensional systems. 

The procedure is based on the idea that the attractors of a deter- 
ministic dynamical system, including those representing nonstationary 
states like limit cycles, correspond to the extrema of the stationary solution 
of the underlying master equation. This simplifies considerably the analysis. 

Following previous work by Lemarchand and Nicolis, (1~ we write 
the master equation for a general reaction-diffusion system and derive a 
Hamilton-Jacobi type of equation for the logarithm of the stationary 
probability U, which can be regarded as a stochastic potential 

The Taylor expansion of U around an extremum is then expressed in 
the representation provided by the eigenfunctions of the linear stability 
operator. General expressions of the successive derivatives up to the fourth, 
calculated at the homogeneous steady state are obtained independently of 
the nature of the bifurcation. 

In Section 2, we apply this general expression of U to the case of a 
Hopf bifurcation, and estimate the orders of magnitude of the different 
terms. This leads to a separation of U into two parts: a fourth-order 
polynomial Uo~, relative to the critical modes, and a second order one, 
associated with a Gaussian probability distribution for the noncritical 
modes. We compare the coefficients of Uc~ calculated in the case of the 
Brusselator with the results found by Walgraefet al. 02) 

The expression of the critical potential Ucr brings out quite naturally 
the essential role played by the phase of the oscillating variables. The 
equation of the homogeneous limit cycle is first determined by looking for 
the states of the phase space for which the gradient of the stochastic poten- 
tial vanishes. The expression of Uor is then reduced to its local expansion 
around an arbitrary point of the limit cycle (Section 3). 

The matrix of the quadratic form in this expansion displays one 
vanishing eigenvalue associated with an eigenvector pointing in a direction 
tangent to the limit cycle. In a system of large spatial extension, there is in 
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fact a large number of such eigenvalues accumulating to zero. This leads us 
to define two kinds of variables, according to whether they are associated 
with vanishing or nonvanishing eigenvalues. They correspond, in the deter- 
ministic analysis, to the slow and fast modes connected, respectively, to the 
phase and amplitude of the oscillating variables. In the representation 
diagonalizing the quadratic form, the local expansion of U~ can then be 
expressed as a sum of two terms, which amounts to factorizing the 
probability in two functions of the two kinds of variables. The fluctuations 
of the fast variables have a Gaussian distribution around a state linked to 
the slow modes by a relation expressing an adiabatic elimination process. 
The important result is that the probability function of the slow variables 
also reduces to a Gaussian distribution, which permits the calculation of 
the spatial correlation of the phase fluctuations. This result, previously 
derived by Walgraef et al.(13) through a Langevin-equation approach, in the 
case of the Brusselator model, implies the destruction of long-range order 
through phase fluctuations in low-dimensional systems. 

2. T H E  S T O C H A S T I C  P O T E N T I A L  NEAR A 
H O P F  B I F U R C A T I O N  

The reaction-diffusion model consists of a set of chemically active con- 
stituents in a volume U in a d-dimensional space. This space is divided into 
n submacroscopic cells. The numbers of cells along each axis are denoted 
by nl,  n2,..., nd such that n 1 x n 2 x " ' '  X ,v/d = n. A vector r = (r I, r2,..., r j)  
with integer components locates a given cell. 

The number of particles of species c~ in cell r will be denoted Xr~. The 
kinetic characteristics of the chemical reactions are the following: 

~p~, order of the p th  reaction with respect to X~; 
vp~, stoichiometric coefficient of X~ in the p th reaction (vp~ > 0 for par- 

ticles formed as a result of the reaction and vp~ < 0 for particles dis- 
appearing as a result of the reaction); 

ko, kinetic constant of the p th  reaction expressed in (sec) ~(liter) 2~vs" 1 
units. 

These constants may include externally controlled concentrations 
which can be regarded as bifurcation parameters. Each constituent X~ may 
diffuse between two adjacent cells with a jump frequency D~ depending on 
the length Al of the cell and related to Fick's coefficient ~ through 

The usual stochastic description (~~ of the chemical reactions as birth 
and death processes and of diffusion as random walk between adjacent cells 
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leads to the multivariate master equation for the probability distribution 
P((Xra}) 

dP 
- - = ~ k  dt p(AU)I X,v~= 

P 

+ ~ D ~  ((Xra-~- 1)P(X~=+ l, X(r+a)u-- 1)-- X~P)  (2.1) 

AzU is the volume of one cell, and a denotes the first neighbors of cell r. 
Only the values of the arguments of P which differ from {X~=} are 
explicitly indicated. 

Denoting by Y the total number of particles in the system, one 
defines the stochastic potential U({Xr=}, t) by 

P({Xr, }, t )=e - s -  yv({x',}'t) 

where S stands for the normalization factor; U({xr=}, t) is considered a 
continuous function of the reduced variables 

Xr~ 
Xr~ N 

where N =  Y / n  is the mean number of particles in a cell 
Substituting this expression of P in the master equation and expanding 

in terms of 1/N, one obtains, to zeroth order, a Hamilton-Jacobi type of 
equation (~6,17) 

1 dS OU H({xj} ,~O_U~ (2.2) 
dt ~?t \ (~xs3/ 

where we have used the contracted notation ( r e ) = j  and the 
"Hamiltonian" H has an explicit form in terms of the kinetic characteristics 
of reactions and diffusion. 

The starting point of the analysis is to seek for solutions of Eq. (2.2) in 
the form of a local expansion around an extremum of the stochastic poten- 
tial, or more generally a point {2;(t)}, defined by the vanishing of the first 
derivatives of U. We refer to Refs. 10 and 14 for the detailed calculation of 
the successive derivatives of U. Specifically, one obtains from the equation 
of the first derivatives of U at {2j(t)} a condition on 2j(t) which reflects the 
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vanishing of all these derivatives at any time. This condition is merely the 
deterministic equation 

dx+( t ) _ I-Ij 
dt 

where the kinetic polynomial H/ appears as the derivative of the 
Hamiltonian H with respect to cgU/cgxj, evaluated at the reference state: 
{xj=Yj(t), 8U/Ox/= 0}. Equivalently, H~ can be viewed as the first trans- 
ition moment of the master equation. 

Our aim is to exhibit the role of the fluctuations around the deter- 
ministic trajectories, when the externally controlled parameters are chosen 
in a neighborhood of a bifurcation point. The stability properties of these 
trajectories depend on the eigenvalues cot of the linear stability operator H/  
evaluated at the deterministic state {~/(t)}. They obey the following 
equation 

2H/C;,=coIC; 
j '  

where C + is the eigenvector associated with co+, and H /  can be viewed as 
the derivative of the Hamiltonian H with respect to x/ and 8U/Ox/, 
calculated at {x/} = {~j(t)} and {OU/~?x/} =0.  

For  a reaction diffusion system, / _  r,~, H j - H r =  is a sum of two parts 
related, respectively, to the chemical and diffusion processes. It reads 

g;'~'= M~'c~(r - r') - D~c~(c~ - cd ) ~ [6(r + a - r') - 6(r - r ' ) ]  
a 

where M:'  is the linearized operator of the chemical kinetics or equivalently 
the first derivative of the first chemical transition moment of the master 
equation. 

For  periodic boundary conditions, the components of the eigenvectors 
C + of the operator H}' are given by 

o = o / 7  = e,, ,o 

Note that the vector rn plays the role of a Fourier variable. The coefficients 
(Cm)~ are the eigenvectors of a simple matrix in the space of chemical con- 
centrations. They obey the following equation: 

[M~ KmD~b(a ~ )](Cm)~,=com~(Cm)~ 

with Km = Z= (1 - e ia m). 
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Now, the equation of the higher derivatives of U can be expressed in 
terms of the higher derivatives of the transition moments  denoted by 
M ~'~ ...... for the chemical processes and H~J ...... for the reaction-diffusion ace'. �9 �9 j j  �9 " " 
processes. These equations are more easily solved in the representation 
which diagonalizes Hr .  In the new variables at = 0"m/~, defined by 

r where ~ j = X j - - ; ~ j ( t )  

the expansion of U takes the following form: 

i t~t2 1 [L#[3 1 
U ( { O ' I } ) = ~ .  U ~ , 1 ( ~ 1 2 ~ - ~ .  " U r (712~13~-~ .  ull121314(~ll(~12(~13G[4-~ "*" 

(2.3) 

We adopt  the convention that all repeated indices with numerical 
exponents l 1, l 2 .... are summed over. The coefficients U H .... denote the 
derivatives of U with respect of o[, or,  .... The expansion does not contain 
first-order terms because of the definition of the reference state, nor  a con- 
stant term, which can always be incorporated in the normalization con- 
stant. 

As pointed out in the Introduction, the effect of fluctuation on the 
deterministic attractor may be reduced to the study of the stationary 
solution of the master equation. This solution is obtained by solving the 
stationary equations of the successive derivatives of U when the reference 
state {2j(t)} is a homogeneous stationary state s  ) = s for all t 
and r. The coefficients of Eq. (2.3) have then the following expressions: 

Hll ,  
UH ' 1 _ (2.4a) 

0 ) / +  0)l'  

U H~ Ur[ 2 U H3 
u l l 'U  __ 

(~O ll ~- 0)12 -~ 0)13 

14l 5 -- 1 H [4 U l 
[ ~ l l l ? 1 3 { H l l  Ul412 gl5131 ~- [112 t4l 3 } ~- g1112p]  

(2.4b) 

u " " ' "  - .s,,,,,,,,, { u u , d  u #''''' } 

U Hj Ur[ ~ uC't 3 Ur"f 

Oil -~- 0)12 -1- (I)13 -~ (~014 

__ HlSl6l 7 r z -  1 U f l  1 UlT~ 

H zSt6U 1U-1 H t5 + m2 ~s[3 ~4 + [~[~[3 U ~  } + Hm2[3t,] 

cp r H # I  6�9 1 ~7[1[213i4] - -  [1 tJ l512 U171S19U17[31 Ulsl~ f lgl~ 

(2.4c) 

where the quantities HgY ...... are intensive (independent of n). The sym- jj' ... 
metrization symbol @ .... applied to a function of the indices j, j',... 
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represents the sum of all distinct terms obtained by permutation of these 
indices. This system of equations has already been studied in the case of a 
bifurcation to steady states. (1~ Our aim here is to apply it to a Hopf 
bifurcation. 

In the vicinity of a bifurcation of time-dependent solutions, the spec- 
trum of the linear operator Hf is characterized by a set of complex con- 
jugate eigenvalues C0mft, CO,,~ with a small real part. 

In a general reaction-diffusion system of p variables (p > 2), the first 
instability will generally appear for a nonvanishing value of Km, 
corresponding to a preferred spatial periodicity. However, we are interested 
primarily in reaction diffusion systems of two chemical components. In this 
case, the first instability appears for Kq = 0 and the critical modes are 
characterized by values of m = q so that Kq is small. The corresponding 
critical eigenvalues Coz0 may be written 

COlo = (O qft = ~q "~- iflO q 

with, to the first order in Kq: 

? ] q = ? l o + r l l K q ,  O q = O o + O I K q  

and where/~ can only take the two values 1 and - 1 (or 1). The noncritical 
eigenvalues are denoted by Coz,. 

In order to exhibit the simplifications arising in Eqs. (2.4), when the 
system operates in the vicinity of a Hopf  bifurcation, the central quantity 
which has to be analyzed is the coefficient of the quadratic term U H' in the 
expansion (2.3). 

2.1. Eva luat ion  of  t h e  Q u a d r a t i c  T e r m s  

We first examine the elements of the inverse matrix Ul7 ~ which reduce 
at the dominant order to 

Uqfllq,13 ' = _ ( ~ ( q  21- q;)  M~ft ,  (2.5) 
co#ft -k- co4, ~, 

where ~ = - q  mod 2~. 
If (q',/~') = (~,/7), the denominator in the expression of Uq~Ot7 goes to 

zero, and this element diverges as one approaches the bifurcation point. All 
the other elements Uy 1 are supposed to remain finite. This implies that all 
elements U n' are small and given by 

U qftq''5'= 6(q + q ' )[eqf t f~( f l  + f l ' )  + O(e2ft ) ] 

with t~ t = -2(r/o + ~1 gq)/Mftfl, ~qft : ~qfl = ~" q" 
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Hence the quadratic terms separate in two groups: 

- * * being the complex where use has been made of the property a to-  alo, a~o 
conjugate of azo. 

2.2. Orders of M a g n i t u d e  of the Var ious Terms 

If all comb's are negative and finite, there is no need to go further than 
the quadratic term. But if some eigenvalue becomes small, the probability 
of the states for which the noncritical components are small and such that 

I%1 ~< (~10) ~/2 IGI0I (2.6) 

must include higher-order terms. Cubic and quartic terms become therefore 
significant provided they have the same order of magnitude as the 
quadratic ones. 

Comparing first quadratic and quartic terms, we see that, for nonsmall 
U/0~0tdo', they are comparable if I%1 =O((~i0)~/2), which defines a small 
neighborhood of the bifurcation point. 

Coming next to the cubic terms, we see, from the above argument, 
that one way that these terms can be comparable to the quadratic and 
quartic ones is 

g ,OfO,'~ ~- O( (~q)1 /2 )  

The only other way cubic terms can influence the stochastic potential is 
through the presence of one noncritical mode: 

Utdot~ato~rloa~ 
provided that U~04I~ is of O(1) and az~ of O(~,q). Summarizing, we can write 
the following stochastic potential: 

1 1 ?z27 1 ~ 2 3 U = ~.. ~t~a~ar~ + ~. g oo oa~a~g~g + ~ gtoto~o4%~rtg,r~U4 

1 1 121 
Ul;l~t;a? at2 a? + (2.7) 

2.3. Evaluation of the Cubic Terms 

We first evaluate the third derivative of U with respect to three critical 
variables. On examining the orders of magnitude of the various terms of 
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Eq. (2.4b) for l = qfl, l' = q'~', l" = q"~", we see that U q~q'~'q'fl" reduces at the 
dominant order to 

U q[~q'~'q'fl'= 6(q + q '+ q") ~qm~'~"+ ~q'm~'"q- ~q,,m~' 
--i(fl + fl' + fl") Oo 

(2.8) 

where M~ '~" are the second derivatives of the first chemical transition 
moment. 

As the denominator never vanishes, this quantity is of order eq, and 
can be therefore neglected. 

There is thus no need to introduce a second smallness parameter in 
addition to the bifurcation one, as in the case of stationary space periodic 
solutions. 

Coming next to the third derivative with respect to only one non- 
critical variable am~, we see that U mfiqflq'fl' vanishes owing to the Kronecker 
delta 6(q + q' + m). 

Summarizing, the stochastic potential contains no cubic terms at the 
dominant order. 

Note that in a system of more than two components, this property is 
not preserved because of the existence of noncritical values of ft. 

2.4. Evaluation of the Quartic Terms 

The coefficients of the quartic terms are deduced from Eq. (2.4c) for 
l=  lo, I '= l'o, l"= ld, l " =  ld'; at the dominant order, they reduce to 

U~otol~l; " = eto~;~loe~ ' 
COfo + cot; + cot;, + COro,, 

- H';4,o V'o';"4 + 1 } x 
~o~;gl;" e4et~eZo'et~ ,o e4eg%' 

(2.9) 

The only nonvanishing quartic terms are such that, at the bifurcation 
point, 

cot o + cot o + e)r o + cot;" = O(eto) (2.10) 

This implies 

y y"=0 

It is instructive to point out the analogy between the choice of the 
dominant terms in the expansion of the stochastic potential and the reduc- 
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tion of the corresponding deterministic equations into a normal form. In 
this later case, it turns out that the only nonlinear terms that cannot be 
eliminated are associated to "resonant eigenvalues" ~o, for which there 
exists miE [~, ( i t  {1,..., k}) and s t  {1,..., k} such that 

k k 
(o~= ~, mico i with ~ mi>~2 

i = l  i = 1  

co; being the ith eigenvalue of H~', calculated at the bifurcation. 
Here the relation mo~ = COo~ + p(COo~ + COOS) verified at the bifurcation 

point, defines the resonances for all p >~ 1. The first resonance appears at 
p = 1 and is of order 3. Owing to the nonexistence of resonance of order 2, 
the terms of order 2 can be eliminated from the deterministic equation in 
agreement with our result that terms of order 3 are absent from the 
stochastic potential. 

Actually for values of the smallness parameter qo slightly different from 
zero, and for a large system, the first resonance relation is replaced by 

or 

(J) qfl - -  O) q, fl - -  O) q,, fl - -  O.) q,,, fl = O ( l~ q ) 

(J) qfl "~ (D q,,,fl ~-  (.O q,f l  ~- (J) q,,fl = 0 

This is exactly the condition (2.10). 
We choose to write the term fi = 1, fi '-- 1, f i"= i, fi" '= i for which 

~#i -]- ~4'i + ~ + (2)4"1 

= 4qo + t l l (K q + Kq, + Kq,, + Kq,,,) -b- i01( --Kq - Kq, + Kq,, -}- Kq,,,) 

We denote 

K = Kq + Kq, + Kq. Jr" Kq,,,, K = - K q  - Kq, + Kq,, -]- Kq .... 

Equation (2.9) is simplified by using the result previously obtained for 
U t;t~'r~ [Eq. (2.8)] and the expressions of H~0~ and H~0~' in terms of the 
derivatives of the chemical transition moments. We thus obtain 

u q l q ' l q , , l q , " l  

= M l i ( 4 t l o + t h K + i O l -  K)2(~(q+q'+qtt+qtt,) {(Re Mlli oo im M I 1  I1MIIi) (4qo + Kql) 

1 
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Introducing the following notation: 

Ul 

bl 2 

1 ~ ~xll ~arli 
= R e  M1 lI --0oo hn  Jr1 1 1v1 1 

- - Im/~1 i -~- -~  (~ I/{1[2-~-2 l / l l , Z -  Re M I I / I  i )  

i_K(r]lu 2 -  01 u l) u(q, q', q", q"') = ul q 
4t/o + ql K + i01_K 

we finally find 

g q l q ' l q ' l q " l  - 2  
Mli 

6(q+q' +q" +q") u(q, q', q", q ' )  

Note the properties of u: 

u(q, q', q", q " ) =  u(lql, Iq'l, Iq'l, Iq"l) 

u(q, q', q", q") = u*(q', q'", q, q') 

where * means complex conjugate. 

2.5. S t o c h a s t i c  Po ten t ia l  

We are now in position to write the stochastic potential in the reduced 
form: 

U _  
2 V 

L 2  (r/0 + r]lKq ) O"ql O'q[ 
M~i q 

6 ] +~�9 ~ 3(q+q'+q"+q")u(q,q',q",q")Crqlaq'l~rq'~aq"~ 
�9 qq,q,,q., 

1 ml~1m2~2 
-~- ~ U Omlflll~m2fl2 (2.11) 

with m 1 ~ ql and m 2 r q2. 
The potential appears as a sum of two well-separated parts: a fourth- 

order polynomial Ucr relative to the critical variables and a second-order 
one, associated to a Gaussian distribution for the noncritical modes. It 
follows that the probability of the noncritical modes is a Gaussian dis- 
tribution centered on the stationary state a t = 0 ,  independently of the 
critical variables. This property justifies the validity of the rotating wave 
approximation used in Refs.13 and 19 to eliminate the noncritical modes. 

82L41:3-4-I 3 
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2.6. Illustration 

The above results will now be applied to the trimolecular model, the 
so-called Brusselator, corresponding to the following reaction scheme: 

A ~ X  

2X+ Y--+ 3X 

B + X ~  Y + D  

X ~ E  

Using standard notations, the eigenvalues of the linear stability 
operator verify the following matrix equation: 

( - o B - 1 -  KqD~ CO q~ 
- -  B - -  A 2 - -  K q D  2 - -  ( D q ~ / l \  (Cq)61J  

At the first order in Kq and B - B ~  = B-(A2+ 1), the eigenvalues reduce 
to 

with 

(D qfl = 170 ~- ? ] 1 K q  -~ ifl( Oo + O1 Kq) 

B - B~ DI + l)2 
~o= 2 ' ~1-  2 

A 
Oo= A, 01 ='~ (D1-  D2) 

The eigenvector matrix, evaluated at the lowest order, is independent 
of Kq, and is chosen as 

[(cq)~]~{1,~,~+{1,i}= A - i  A + i  

The coefficients necessary to write the critical potential Uor are then 

A 2 + l  
m l l  - _ _  

A 

u l =  - (A2 + 2) 

4A 4 - 7A 2 + 4 
U 2 ~  - -  

3A 
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The resulting stochastic potential is in agreement with the generalized 
potential o~ found by Walgraefetal. (12) with a Langevin equation 
approach, after a rescaling of the variables aq~. In addition, the comparison 
allows us to evaluate the strength of the random force F: 

A 2 + l  
F = M l i =  

A 

3. S E P A R A T I O N  OF P H A S E  A N D  R A D I A L  V A R I A B L E S  IN T H E  
P R O B A B I L I T Y  D I S T R I B U T I O N  

Our next step is to express the critical part of the stochastic potential 
around the stationary states, in a form exhibiting separately the con- 
tributions of the phase and of the amplitude of the oscillating variables. 

In contrast with the process of adiabatic elimination used in Ref. 13 
which ignores a priori the fluctuations of the fast variables, the analysis of 
the stochastic potential will allow us to calculate the probability associated 
to the slow as well as fast variables. 

To this end, we seek for a local expansion of the critical part of the 
potential around a state for which all the first derivatives of Uor vanish: 

g c r  - - = 0  for all Oq~ (3.1) 
OG qfl 

From Eq. (2.11), Eq. (3.1) reads 

~?Ucr 2 [ 
Offql- Mn  (tl~ a~ 

' ] +-~ Y" 6(q+q'+gf'+gf")u(q,q',q",q")aq,lao,~ao,,, i = 0  
q,q',q,,, 

0Ucr_ 2 [ 
~0" ~? i M l i  (t l~ Gql 

1 + 0" + 0") q") 1 + 5 ~ 6(q + q' u(q, q', q", ~o.i a,..1 ~q...~ = o q'q"q" 

These two equations are complex conjugate, and admit the homogeneous 
solution: 

O'ql = O-O(~qO , O'~/i = O'~(~qO (3.2) 
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where a o obeys 

with 

tloao + ~u~ a o aoa o - 0 

ul = u(O, O, O, O) 

(3.3) 

The nontrivial solution of Eq. (3.3) defines a homogeneous limit cycle of 
radius: 

Ro= ]aol = ( - 2r/-------2~ 1 / 2 -  - (3.4) 
\ Ul ,] 

Any point on the limit cycle is fixed by 

ao = Ro ei~~ (3.5) 

where ~0 0 is the phase. 
For all points of this limit cycle, the probability is constant, at the 

dominant order. 

3.1. Local Description Around a Point of the Limit Cycle 

We look now for a local expansion V of the critical potential around 
any point of a given limit cycle defined by the value of qo. 

The first step of the calculation consists in writing the second 
derivatives of the critical potential Uor found in Section 2, and in evaluating 
them at the homogeneous state defined by Eq. (3.3) and denoted by 
index 0. We obtain 

2 U~ o - 1 
~O'ql OO'q'l MI~ 6(q + q') u(q, q, 0, 0) a ' a *  

02Ucr o - 1 
Oaqi Oao, i MI~ 6(q + q') u*(q, q, O, O) aoao 

~2Ucr o - 2 
~(TqI~GO,I M l ~ 6 ( q - - q ' ) [ r l o + r l l K q  + u ( q ' O ' q , O )  aoao*] 

To facilitate the writing of the quadratic part V (2) of the expansion, we 
introduce the shorthand notation: 

u(q, q, O, O) = Ul + Uq 

~]O"]- ?]l gq~--" r]q 

O'ql - -  O'O(~ qO = ~ql 
(3.6) 
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This gives 

V ( 2 ) =  _ _ _  
2 [ul + Uq ~,O.,/,. y 

Mli Z 3(q + q') [ _ ~  ~'o o Sql ~q'1 qq' 

1 b! 1 "JC IA: 7 
+ ~ (,q + Ul ~o~*)(~q, ~q,~ + ~q~ ~q,~) + - - T - -  ~o ao~q~ ~q,~ J 

Using the conjugation relations between the variables to eliminate ~01 and 
~q~, we can write V (2) as a Hermitian form: 

V(2) _ 2 [u  1 "~ Uq 0 . , ~ , ? .  2., 

M,~ ~ l ---Z-- 0 t'0 %ql~qi 

1 ul +u* ] 
-}-~(I']q-~-bllffOO'~)(~ql~l"~qi~qi)-~ffOGO~qi~ql (3.7) 

The matrix associated to ( - M , f f 2 )  V (2) is simplified by using the value of 
a o [Eq. (3.5)]: 

"1 

\~-- ~ r/o e 2i~oo _ ( ~ ~ O ~ ~ l Kq  ~ / 2 Id 1 

Our next step is the diagonalization of this matrix, and the separation 
of the two eigenvalues according to their different order of magnitude. The 
resulting eigenvalues are 

,( 2q=~  --t/o+rllKq• 1 +uq 
Ul / 

(3.9) 

As we are only concerned with the vicinity of the homogeneous reference 
state ao, Kq may be regarded as a suitable smallness parameter which con- 
trois our expansion. Let us recall that the smallness of t/o guarantees the 
validity of the previous expansion of U [cf. Eq. (2.11)], but here we sup- 
pose to be far enough from the critical point, so that qo>>qlKq. This allows 
the following expansion of the eigenvalues in powers of Kq/qO: 

,~qo = ~ _  ~ Kq 2 +~ 
1 (<)2) 

•ql= --tl~ 2 t l l K q + O  Z 

(3.10) 
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The important point is the different order of magnitude between the two 
kinds of eigenvalues. If we adopt the terminology of the adiabatic 
elimination process, the finite eigenvalue 2ql will be associated to the so- 
called fast modes, whereas the small ones )'q0 to the slow modes. In par- 
ticular, for q = 0, 2q0 reduces to zero, and the corresponding eigenvector 
defines a direction tangent to the homogeneous limit cycle. 

Note that, for any two-component chemical system, t/~-- 
- (D1  + D2)/2 is negative while q0 is positive above the bifurcation point: 
Thus, all the eigenvalues ( - 2 / M 1 i )  •q0 and ( -2 /M~i)2q~ are positive or 
vanish. This proves that the probability P = e w v is maximal at any point 
of the limit cycle, which is then an attractor. 

To express V (2) in the new coordinates denoted by Yqo and Yql, we 
choose the following normalized eigenvector matrix: 

1 ei~O ~ 1 t p= 7 ~ eiq~~ 

1 e_i~oo 1 e_i,oo / (3.11) 

The relations between the new coordinates and the old ones are then 

1 
~ql  . . . .  iq~ " + Y q l )  -~ ~ ~ f qO 

1 ffql = - -  e - i~~  Yq0 q- Yql ) 

(3.12) 

This leads to the following expression of the quadratic form: 

v(el- Mli2 ~q 2q 0 lyqOl2.+.2ql lYqll2 (3.13) 

The states for which the fast components are small and such that 

lyqll2~ qlKq lyqol 2 (3.14) 
qo 

are not described adequately by V ~2~. For  these states, it is necessary to 
evaluate the orders 3 and 4. We thus evaluate next the dominant part of 
V (3) and V (4). The situation is analogous to the one described in Section 2, 
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which had led to the separation between critical and noncritical terms. Let 
us examine the third order. We find in the old coordinates 

i7(3) _ 2 
M~i ~ 6(q + q' + q")[u(q, q', q", O) ~ q l  ~q'l ~q"i 

qq'q" 

+ u(q, O, q', q")  ffO~ql~q,l~q,,i] 

Carrying out the change of coordinates defined by Eq. (3.12) and looking 
for the dominant contributions, we first observe that the coefficient of 
YqoYq'oYq"O is of O(Kq/tlo ). Consequently, V (3) reduces at the dominant 
order to 

2 1 
V(3)- (--ulr/o) 1/2 ~ O(q+q'+q")YqOYq'oYq"l (3.15) 

MI~ 2 qq'q" 

From relation (3.14), the order of magnitude of this contribution is com- 
parable to the one of V ~2) ifyqo'~(Kq) 1/2. It is then of O(/Uq). 

Coming next to the fourth-order term V (4), we find at the dominant 
order K~q 

V(4) _ 2 ul 
Mli  16 qq'q " q" 

{)(q + q' + q" + q ' )  Yqo Yq'o Yq"O Yq'"o (3.16) 

Summarizing, we can write the following local expansion: 

V= V (~ 2 [ 1 
M l i  L . ~ 2 q I K v  lYq~176 lyq*j~ 

q 

1 
+ 2 ( -- b/1/~0) 1/2 ~ fi(q + q' + q") YqO Yq'O Yq"l 

qq, q ', 

ul ] 
+-~ 2 (~(q+q'+q"+q'") YqoYq'oYq"oYq'-O 

qq'q"q'" 
(3.17) 

where V (~ is a constant depending on the reference state ao, and will 
hereafter be ignored. 

Taking advantage of the conjugation relations between the new 
variables defined in Eq. (3.12), namely: 

YqO-- - -Yoo,  Yql = YO1 

we further transform the expression of V in order to separate the con- 
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tributions of the fast and slow variables, by using the same method as in 
Section 2. We obtain 

V -  ~o rl~Kq lyqOI2 

; 
( 1 (--b/l~ 1/2 6(q '"+q .... ) ]  

X Y*I - -  ~ \ - - ~ o /  E - -  q) Yq*,,o Y*,,,,o (3.18) 
q,-q .... 

We first observe that the probability of the fast variables is a multivariate 
Gaussian distribution centered in 

1 _U 1 1/2 
yqt = ~  ( - ~ o )  E ( ~ ( q ' + q " - q ) y q , o y q , , o  (3.19) 

q 'q. 

This provides the justification of the adiabatic elimination of the fast 
variables used in Ref. 13. Note that the quartic terms in V are entirely 
included in the above Gaussian distribution. As a result, the probability of 
the slow variables also reduces to a Gaussian distribution. 

3.2. Description in Terms of Phase and Amplitude Variables 

Polar coordinates are especially appropriate to describe the potential 
expanded around a point of the limit cycle. We thus introduce the phase 
and radial variables by 

1 
(Tql = -- R r, exp[i(cp; + rlq) ] 

n 

1 
a q~ = -  Rrl exp[ i ( -q ) ;  + rlq)] 

n 

(3.20) 

where Rr and q)r appear, respectively, as modulus and argument of the 
inverse Fourier transform of ~rql. Using the relations between the variables 
yq~ and ~q,8 o n  one hand [Eq. (3.12)], ~q~ and ~q~ on the other hand 
[-Eq. (3.6)], one can express Yqt~ in terms of the new phase and radial 
variables as 

yqo = , f 5  / R,,  sin( o   -  Oo) 
n 

(3.21) 

Yql  -= ~ ! (Rr ,  COS(fOr1 - -  (,00) - -  R o  ) eir'q 
17 
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The conditions of validity of our local expansion V around a point of 
the homogeneous limit cycle defined by Eqs. (3.2)-(3.5), imply that the 
phase Or and the radius Rr remain close to (Po and Ro. Under these con- 
ditions, Eqs. (3.21) become at the dominant order 

Y q o = x ~ !  Ro(Orl--Oo) e ir~q n 

Yql=XS21(Rrx-Ro) e irlq 
tl 

(3.22) 

In terms of ~0 r and R,, the potential V reduces to 

V -  2 I~q rllKq eirlql 2 2 1 Mli - - ~  R2 [ (0 ; - -  00) ---~qo I(R,'-Ro) eir'ql2 

This allows us to speak of the probability of the phase: 

P ~ o  = g - J v  v e 

with 

2 rll firlq[2 
V~-  MI Z ~ / ~ q R ~ I ( O ; - O o )  

q 

(3.23) 

We thus conclude that phase and radial variables can be separated, and 
behave, respectively, as the slow and fast modes. 

Note that the summation over q can be explicitly carried out, and 
lead, by switching to a continuous description of the space variable r, to 

2 01 
V~-  M,t ~ Ro 2 f [ V ( o r -  O0)] 2 dr (3.24) 

with 01 = (91 + 92)/2, where ~i is the Fick coefficient of the component i. 
As mentioned earlier the validity of this expression is limited to small 

values of Or-- O0- However, Eq. (3.24) shows that Vo is independent of the 
phase Oo of the arbitrary reference state on the limit cycle (VOo = 0). 
Hence, the same form of V~ can be used to express the phase probability of 
any state in the neighborhood of the whole limit cycle. It reads 

This result is in agreement with the probability found in Ref. 13, and allows 
for the calculation of the correlation function of the phase. 
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Walgraefet al. C13~ show that the latter vanishes for infinitely extended low- 
dimensial systems. This compromises the possibility of sustaining 
oscillations in one- or two-dimension systems. 

Note that the deterministic analysis alone could never lead to such a 
conclusion. 

4. C O N C L U S I O N  

The stochastic potential analysis, which has been applied to a Hopf 
bifurcation in the present paper, provides a general method of investigation 
of the instabilities in nonequilibrium systems. Indeed a great variety of 
singular situations arising through bifurcations can be described by a 
systematic study of the Taylor expansion of the stochastic potential U in 
the vicinity of a homogeneous reference state. 

The single linear change of variables which diagonalizes the linear 
operator of the deterministic equations is enough to simplify this expansion 
of U. The resulting form exhibits the singularities arising when the system 
operates in a region of the parameter space close to one or several bifur- 
cations. By a simple estimate of the order of magnitude of the various 
terms in this expansion, one is able first to separate critical from noncritical 
modes and second to reduce the critical part to the so-called "resonant" 
terms in the terminology of the theory of normal form. It is worth pointing 
out that the expansion thus obtained for the critical stochastic potential is 
equivalent to one particular unfolding of the normal form, imposed by the 
specific reaction-diffusion model. 

Moreover the determination of the states for which the gradient of the 
stochastic potential vanishes leads to a set of singular points which con- 
tains the fixed points as well as the other nearby attractors of the vector 
field. 

In addition to the deterministic properties deduced from the analysis 
mentioned above, the stochastic potential provides information on the fluc- 
tuations around the attractor. In the case of the Hopf bifurcation these 
fluctuations turn out to play a major role in the destruction of long-range 
order in low-dimensional systems as known in Ref. 13. In the present 
paper, this result is deduced from a systematic analysis of the local proper- 
ties of the critical stochastic potential. 

We expect that this method is generalizable to more complicated cases 
like degenerate bifurcations. The deterministic study of such a situation has 
been carried out by Guckenheimer (18~ for finitely extended systems for 
which the linear operator displays, at the bifurcation point, a simple zero 
eigenvalue and a pair of purely imaginary ones. 

We intend to report of these problems in a forthcoming publication. 
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